Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Phenomena of PM Deposition and Oxidation in the Diesel Particulate Filter

2019-12-19
2019-01-2288
The diesel particulate filter (DPF) has attracted strong attention as a desirable after-treatment device for the particulate matter (PM) contained in exhaust gas of diesel engine. When particulate matter was deposited on a DPF, the pressure drop increases due to the PM trapping in the surface cavities of the DPF. After that, an active regeneration is required. Since more fuel is required for the regeneration in addition to the normal driving (passive regeneration), the fuel economy deteriorates. In order to improve the performance, a passive regeneration is necessary. In this study, we compared the dependence of the shape and depth of the cavity of the DPF on the PM trapping process by a comprehensive overall model and numerical calculation. We found that the pressure drop and elapsed time of the PM trapping varied, strongly depending on the cavity shape of the DPF surface. Further we examined the relative importance of the amount of PM deposit and the surface cavity shape of the DPF.
Technical Paper

Investigation of Particulate Matter Formation in a Diesel Engine Using In-Cylinder Total Sampling and Thermal Desorption-GCMS/Carbon Analysis

2019-12-19
2019-01-2276
In-cylinder total sampling technique utilizing a single-cylinder diesel engine equipped with hydraulic valve actuation system has been developed. In this study, particulate matter (PM) included in the in-cylinder sample gas was collected on a quartz filter, and the polycyclic-aromatic hydrocarbons (PAHs) component and soot were subsequently quantified by thermal desorption-gas chromatograph mass spectrometry (TD-GCMS) and a carbon analyzer, respectively. Cylinder-averaged histories of PAHs and soot were obtained by changing the sampling timing. It was found that decreasing intake oxygen concentration suppresses in-cylinder soot oxidation, and the fuel with higher aromatic and naphthenic contents accelerates soot production.
Technical Paper

Numerical Simulation of In-Cylinder Particulate Matter Formation in Diesel Combustion by CFD Coupled with Chemical Kinetics Model

2019-12-19
2019-01-2277
A reduced chemical kinetic model of diesel fuel, which can be applied to computational fluid dynamics (CFD) simulation coupled with detailed chemistry using the CONVERGE software, is developed to simulate the particulate matter (PM) formation process. We analyzed the influence of varying intake oxygen concentrations and fuel composition on the polycyclic aromatic hydrocarbons (PAHs) and soot formation processes. When the intake oxygen concentration was decreased, no significant difference was observed in PAH formation associated with soot formation, and the soot mass generated after the peak was high. When the fuel contained high levels of aromatics and naphthene, the PAH and soot formation mass increased. These tendencies were in good agreement with experimental results [1].
Technical Paper

New CO2 / Fuel Consumption Certification Cycles and Design Implications for Fuel Efficient Lubricants

2019-12-19
2019-01-2367
During this decade, the constant increase and globalization of passenger car sales has led countries to adopt a common language for the treatment of CO2 and other pollutant emissions. In this regard, the WLTC - World-wide harmonized Light duty Test Cycle - stands as the new global reference cycle for fuel consumption, CO2 and pollutant emissions across the globe. Regulations keep a constant pressure on CO2 emission reduction leading vehicle manufacturers and component suppliers to modify hardware to ensure compliance. Within this balance, lubricants remain worthwhile contributors to lowering CO2 emission and fuel consumption. Yet with WTLC, new additional lubricant designs are likely to be required to ensure optimized friction due to its new cycle operating conditions, associated powertrain hardware and worldwide product use.
Technical Paper

Mechanism Analysis on LSPI Occurrence in Boosted S. I. Engines

2015-09-01
2015-01-1867
Mechanism of suddenly occurring behavior of low speed pre-ignition (LSPI) in boosted spark ignition (SI) engines was analyzed with various experimental methodologies. Endoscope-visualized 1st cycle of LSPI showed droplet-like luminous flame kernels as the origin of flame propagation before spark ignition. With the oil lubricated visualization engine, droplets flying were observed only after enough accumulation of fuel at piston crevice. Also, it was confirmed that subsequent cycles of LSPI occur only after enough operation time. These results indicated that local accumulation of liner adhered fuel and saturation of oil dilution can be a contributing factor to the sudden occurrence of LSPI.
Technical Paper

TEM Analysis of Soot Particles Sampled from Gasoline Direction Injection Engine Exhaust at Different Fuel Injection Timings

2015-09-01
2015-01-1872
For better understanding of in-cylinder soot formation processes and governing factors of the number of emitted soot particles of Gasoline Direct Injection (GDI) engines, Transmission Electron Microscope (TEM) analysis of morphology and nanostructure of the soot particles sampled in the exhaust should provide useful information. However, the number concentration of the soot particles emitted from GDI engines is relatively low, which was impeding reliable morphological analysis of the soot particles based on a sufficient number of sampled particles. Therefore, in the present study, a water-cooled thermophoretic sampler for simple and direct sampling of exhaust soot particles was developed and employed, which enabled to obtain a sufficient number of particle samples from the exhaust with Particulate Number (PN) 105 #/cc level for quantitative morphology analysis.
Technical Paper

Development of an On-Board Fuel Reforming Catalyst for a Gasoline Engine

2015-09-01
2015-01-1955
On-board hydrogen generation technology using a fuel reforming catalyst is an effective way to improve the fuel efficiency of automotive internal combustion engines. The main issue to be addressed in developing such a catalyst is to suppress catalyst deterioration caused by carbon deposition on the catalyst surface due to sulfur adsorption. Enhancing the hydrocarbon and water activation capabilities of the catalyst is important in improving catalyst durability. It was found that the use of a rare earth element is effective in improving the water activation capability of the catalyst. Controlling the hydrocarbon activation capability of the catalyst for a good balance with water activation was also found to be effective in improving catalyst durability.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Journal Article

A Study of Particulate Emission Formation Mechanism from Injector Tip in Direct-Injection Gasoline Engines

2019-12-19
2019-01-2244
The mechanism causing in-cylinder injector tip soot formation, which is the main source of particle number (PN) emissions under operating conditions after engine warm-up, was analyzed in this study. The results made clear a key parameter for reducing injector tip soot PN emissions. An evaluation of PN emissions for different amounts of injector tip wetting revealed that an injector with larger tip wetting forms higher PN emissions. The results also clarified that the amount of deposits does not have much impact on PN emissions. The key parameter for reducing injector tip soot is injector tip wetting that has a linear relationship with injector tip soot PN emissions.
Journal Article

Analysis of Butane Diffusion in Activated Carbon Canister

2009-04-20
2009-01-0976
A canister filled with activated carbon prevents the emission of hydrocarbon into the air, through repeated adsorption and desorption process. A small amount of hydrocarbon, with n-butane as one of the major components, remains inside the canister. The diffusion of this residual n-butane affects Diurnal Breathing Loss performance. This study reports the quantitative difference of n-butane diffusion and breakthrough under three experimental conditions. Furthermore, diffusion speed, which is an important factor in the analysis of canister performance and the design development of canister, was also calculated.
Technical Paper

Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian Accidents

2016-11-07
2016-22-0007
This study aimed to clarify the relationship between truck-pedestrian crash impact velocity and the risks of serious injury and fatality to pedestrians. We used micro and macro truck-pedestrian accident data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤ 30 km/h and for medium-duty trucks at impact velocities ≤20 km/h. The fatality risk was ≤10% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, fatality risk appears strongly associated with vehicle class.
Technical Paper

Low-cost FC Stack Concept with Increased Power Density and Simplified Configuration: Utilizing an Advanced MEA with Integrated Molded Frame

2011-05-17
2011-39-7260
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in durability, cold start-up capability, cost and size with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Reducing Cold-Start Emissions

2000-03-06
2000-01-0892
An adsorber system for reducing cold-start hydrocarbon (HC) emissions has been developed combining existing catalyst technologies with a zeolite-based HC adsorber. The series flow in-line concept offers a passive and simplified alternative to other technologies by incorporating one additional adsorber substrate into existing converters without any additional valving, purging lines, secondary air, or special substrates. Major technical issues to be resolved for practical use of this system are 1) the ability to adsorb a wide range of HC molecular sizes in the cold exhaust gas and 2) the temperature difference between HC desorption from the adsorber and activation of the catalyst to convert desorbed HCs. This paper describes the current development status of hydrocarbon adsorber aftertreatment technologies. We report results obtained with a variety of adsorber properties, washcoat structures of adsorber catalyst and start-up and underfloor catalyst system combinations.
Technical Paper

Engine-Out and Tail-Pipe Emission Reduction Technologies of V-6 LEVs

1998-02-23
980674
Compared with in-line 4-cylinder engines, V-6 engines show a slower rise in exhaust gas temperature, requiring a longer time for catalysts to become active, and they also emit higher levels of engine-out emissions. In this study, The combination of a new type of catalyst, and optimized ignition timing and air-fuel ratio control achieved quicker catalyst light-off. Additionally, engine-out emissions were substantially reduced by using a swirl control valve to strengthen in-cylinder gas flow, adopting electronically controlled exhaust gas recirculation (EGR), and reducing the crevice volume by decreasing the top land height of the pistons. A vehicle incorporating these emission reduction technologies reduced the emission level through the first phase of the Federal Test Procedure (FTP) by 60-70% compared with the Tier 1 vehicle.
Technical Paper

A Study of a Gasoline-Fueled Near-Zero-Emission Vehicle Using an Improved Emission Measurement System

1998-10-19
982555
This paper concerns research on an emission control system aimed at reducing emission levels to well below the ULEV standards. As emission levels are further reduced in the coming years, it is projected that measurement error will increase substantially. Therefore, an analysis was made of the conventional measurement system, which revealed the following major problems. 1. The conventional analyzer, having a minimum full-scale THC range of 10 ppmC, cannot measure lower concentration emissions with high accuracy. 2. Hydrocarbons are produced in various components of the measurement system, increasing measurement error. 3. Even if an analyzer with a minimum full-scale THC range of 1 ppmC is used in an effort to measure low concentrations, the 1 ppmC measurement range cannot be applied when the dilution air contains a high THC concentration. This makes it impossible to obtain highly accurate measurements. 4.
Technical Paper

Development of New Technologies Targeting Zero Emissions for Gasoline Engines

2000-03-06
2000-01-0890
This paper describes new technologies for achieving exhaust emission levels much below the SULEV standards in California, which are the most stringent among the currently proposed regulations in the world. Catalyst light-off time, for example, has been significantly reduced through the adoption of a catalyst substrate with an ultra-thin wall thickness of 2 mil and a catalyst coating specifically designed for quicker light-off. A highly-efficient HC trap system has been realized by combining a two-stage HC trap design with an improved HC trap catalyst. The cold-start HC emission level has been greatly reduced by an electronically actuated swirl control valve with a high-speed starter. Further, an improved Air Fuel Ratio (AFR) control method has achieved much higher catalyst HC and NOx conversion efficiency.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Development of a Slip Speed Control System for a Lockup Clutch (Part III)

2009-04-20
2009-01-0955
It is difficult for a conventional robust control algorithm to assure the performance of a slip speed control system, because the plant (lockup system) includes the nonlinear characteristics of the hydraulic system and large changes in the parameters of the slip model at low vehicle speed. The purpose of this study is to reduce the fuel consumption and improve the drivability of vehicles at takeoff by using a slip speed control system. Providing a large feedback gain is effective in reducing the influence of nonlinearity. However, since the operating parameters of the lockup clutch change depending on the driving conditions, that is not possible. A feedback compensator with a gain-scheduled H∞ control method was used in this study to solve these problems. The effectiveness of the slip speed control system was demonstrated in driving tests. Using this control system, the slip speed can be controlled with high accuracy, thereby reducing unnecessary revving of the engine.
Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
X